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For joint modulation format identification (MFI) and optical signal-to-noise ratio (OSNR) monitoring, a simple and intelligent
optical communication performance monitoring method is proposed, and the feasibility is demonstrated by digital coherent
optical communication experiments. The experiment results show that for all modulation formats, including 28 GBaud
polarization division multiplexing (PDM) QPSK/8-QAM/16-QAM/64-QAM, 100% MFI accuracies are achieved even at OSNR
values lower than the corresponding theoretical 20% forward error correction limit, as well as the high accuracies for
OSNR monitoring. Furthermore, the proposed scheme has a reasonable monitoring level when chromatic dispersion
and fiber nonlinear effects are varied.
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1. Introduction

With the rapid development of the Internet and the explosion in
global communication data, the fast and reliable elastic optical
network (EON)[1,2] is becoming increasingly necessary. With
the change and heterogeneity of network data transmission[3–5],
the next-generation EON will become more dynamic and flex-
ible[6], which is primarily manifested in the dynamic adjustment
of signal characteristics like transmission rate, signal power,
modulation format, and forward error correction (FEC) code
at the transmitter according to the needs of the transmission link
and users. Since the transmitter can automatically adjust the
characteristics of the signal, the receiver must be equipped with
the corresponding digital signal processing (DSP) algorithms
such as polarization demultiplexing, carrier phase compensa-
tion, and other algorithms to demodulate the received signal
in order to maximize transmission accuracy. At the same time,
the transmitted signal would be deteriorated by chromatic
dispersion (CD), fiber nonlinear (NL) effect, polarization mode
dispersion (PMD), polarization-dependent loss (PDL), and
other transmission link impacts. Therefore, optical performance
monitoring (OPM) technology[7–9] is required in order to enable
EON to be efficient and intelligent. Techniques for OPM include
signal modulation format identification (MFI) and estimation of
signal impairment, such as optical signal-to-noise ratio (OSNR),
CD, and NL monitoring[10,11]. MFI is a blind classification

method of the transmitted signal that aims to learn the informa-
tion of the modulation format from various features of different
signals for later demodulation. There are many useful methods
for MFI, such as signal power or amplitude distribution
method[12–15], the Stokes space method[16–18], the peak-to-aver-
age-power ratio (PAPR) method[19,20], and the data-aided pilot
signal method[21]. In addition to MFI, it is important for EON
receivers in OSNR monitoring, since OSNR values are directly
related to the bit error rate (BER) of signal demodulation and
serve as a performance indicator that can reflect the quality of
the transmission link. There are various methods for OSNR
monitoring, including the amplitude distribution method[22],
the data-aided method[23–25], the Stokes space method[26,27],
and the statistical method[28–30].
Currently, the single OPM method cannot meet the needs of

the fast and variable optical communication transmission net-
works, and the transmission quality of EON can be mastered
more quickly and comprehensively by jointing multiple kinds
of performance monitoring technology. With the development
of neural network (NN) technology, the joint OPM technology
has achieved a new milestone. Thanks to the excellent feature
learning and deduction capabilities of NN technology, it is now
able to recognize the minute feature differences between various
signals, enhancing the speed and accuracy of performance mon-
itoring. Mainstream NN-based OPM technologies include con-
volutional neural networks (CNNs)[31–34], artificial neural
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networks (ANNs)[35–39], deep neural networks (DNNs)[40–44],
and long short-term memory (LSTM)[45,46]. Moreover, based
on the structure of the NN, these techniques can be divided into
multitask output and single-task cascade output. In contrast to
the single-task cascade NN that requires independent network
structures for different parameters, the multitask NN can use
a single network structure to analyze multiple parameters, but
the weights of the output layer should be set reasonably. In order
to quickly and effectively perform joint MFI and OSNR moni-
toring on EON receivers, a concise and effective network struc-
ture should be explored.
In this paper, we proposed a multitask learning DNN based

on the Stokes vector (Stokes-MTL-DNN) to perform joint MFI
and OSNR monitoring, by mapping the received signal into the
Stokes space and extracting the distribution of S1 axis and differ-
ential phase of two polarizations as the input features of the NN.
This method does not require additional hardware devices and
does not sacrifice spectral efficiency. In order to validate
the feasibility of the proposed method, we perform experimen-
tal tests on widely used modulation format signals in coherent
optical communication, such as quadrature phase-shift key-
ing (QPSK) and quadrature amplitude modulation (QAM).
The results show that the MFI accuracy of about 28 GBaud
polarization division multiplexing (PDM) QPSK/8-QAM/
16-QAM/64-QAM signals can reach 100% even if the OSNR
value is lower than the corresponding theoretical 20% FEC limit
(BER = 2.4 × 10−2), and the mean absolute errors (MAEs) of
OSNR monitoring are, respectively, 0.127, 0.244, 0.259, and
0.439 dB. Moreover, the OPM performance of this method
under the influence of residual CD is also verified. When the
residual CD is 800 ps/nm, the MFI accuracy of this method is
still 100%, and the OSNR monitoring MAEs are, respectively,
0.168, 0.289, 0.505, and 0.875 dB. The results demonstrate that
the method retains reasonable OPM performance under the
influence of the fiber NL effect.

2. Method

As shown in Fig. 1, at the coherent receiver, the transmitted opti-
cal signals are converted to analog electrical signals by a photo-
detector and then to digital signals by an analog-to-digital
converter (ADC). The digital signals are then processed by using
offline DSP, including downsampling, matched filtering, a
CD and NL compensation algorithm, a constant modulus algo-
rithm (CMA), and a simple phase recovery algorithm called
power iteration method (PIM)[47,48] that can extract phase
noise by tracking the principal component (PC) of signals.
Notice that these mentioned algorithms are modulation format-
independent and may be used as general signal-processing
methods. The first step of PIM for phase estimation is second-
power operation of signals and covariance calculation, given as
follows:

An =
�
RefIX2

n�1�g · · · RefIX2
n�M�g

ImfIX2
n�1�g · · · ImfIX2

n�M�g

�
, (1)

Cn = An · AT
n , (2)

where A is a 2 ×M real matrix, C is the covariance matrix, and
n denotes the nth block of input data.M is the span of the oper-
ation, I is the digital complex signal, X is one of the polarization
states of the signal, “Re” and “Im” denote the real operation and
imaginary operation, respectively, and “T” denotes the transpo-
sition operation. Then, the first PC μ and phase noise φ of the
signal can be obtained by iterative operation according to the
matrix Cn, given as follows:

μ0 =
�
1
0

�
, (3)

μn = Cn · μn−1, (4)

μn = μn=jμnj, (5)

φn = farctan�μn�2�=μn�1�� − π=2g=2, (6)

dIXn = IXn · exp�−jφn�, (7)

where j · j is a modulo operation, and the original signal IXn

is multiplied with phase noise φn after conjugate operation.
Through continuous iteration, the one polarization signal after
phase recovery IX can be obtained. Using PIM, the phases of the
signal’s two polarization states can be synchronized, making it
convenient to produce the uniformly dispersed differential-
phase distribution. Subsequently, the dual-polarization signals
are mapped to the 3D Stokes space as follows[18,49]:
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Fig. 1. Schematic of the proposed Stokes-MTL-DNN.
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where S0, S1, S2, and S3 are Stokes parameters that, respectively,
denote the total signal power, 0° linear, 45° linear, and circular
polarization components. Parameters IX and IY are two polari-
zation states of the complex signals. I2 denotes the square am-
plitude of the complex signal; for instance, the amplitudes of
16-QAM signals contain
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p
. Parameters φsx

and φsy are the modulation format phase information of two
transmitted polarization signals; for instance, the phase infor-
mation of QPSK contains −3π=4, −π=4, π=4, and 3π=4.
Parameters φxn and φyn are the phase noise of two polarization

signals. φ
0
n is the residential phase noise caused by the nonideal-

ity of the algorithm. Since the Stokes parameters are only related
to the amplitude and differential-phaseΔφ of signals, the Stokes
vectors are independent of frequency offset and phase noise.
It is well known that different PDMmodulation format signals

express diverse spatial distributions in 3D Stokes space. There are
also different distributions in 1D Stokes vector S1; for instance,
the 16-QAM signal has three kinds of amplitudes (
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, and�����
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), and the cluster levels of S1 in Eq. (8) are −8, −4, 0, 4, and
8, but the cluster level of the QPSK signal (amplitude is

���
2

p
) is

only 0. Therefore, vector S1 can be utilized as the feature to
describe different modulation formats. Simultaneously, we discov-
ered that the Δφ between two polarization signals also has differ-
ent distribution features; for example, the Δφ of PDM QPSK
signals in Eq. (9) are−π,−π=2, 0, π=2, and π. The cumulative dis-
tribution function (CDF) is used to reflect the distributions of Δφ
intuitively and simply. Then the processed samples are projected
into the axis with 80 bins and 100 bins for Δφ to obtain the
S1 distribution features. Figures 2(a) and 2(b) show the S1 and
Δφ distribution features of PDM QPSK/8-QAM/16-QAM/
64-QAM signals under low and high OSNR values, respectively.
It can be seen that the S1 distribution of QPSK when OSNR
is 9 dB is similar to that of 64-QAM when OSNR is 30 dB, but
theirΔφ distributions are significantly different. As a result, taking
S1 and Δφ as features can increase the discrimination of differ-
ent signals and improve the accuracy of OPM by using DNN.
Then, the signals are trained and tested by Stokes-MTL-DNN
to obtain the corresponding modulation format information,
which is applied by the subsequent DSP algorithms to finally
demodulate data. In order to facilitate the training of the NN,
the modulation format needs to be one-hot-encoded first, such
as [0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0] corresponding to QPSK,
8-QAM, 16-QAM, and 64-QAM, respectively. The structure
of the proposed Stokes-MTL-DNN is shown in Fig. 1, the

distribution features of S1 and Δφ are input into the NN for
dimension reduction, respectively, and then the two features are
concatenated to extract the features by the four hidden layers,
where the activation function is LeakyReLU and the neurons
are 128, 64, 32, and 8, respectively. Finally, the modulation format
and OSNR value are output simultaneously at the output layer,
where the neurons of MFI are 4 and OSNR is 1. Among them,
MFI is considered a classification taskwith softmax and categorical
cross entropy as the activation function and loss function, respec-
tively; OSNR monitoring is considered a regression task with lin-
ear and logcosh as the activation function and loss function,
respectively. The Stokes-MTL-DNN is implemented with the
Keras deep-learning framework.

3. Experiment

3.1. Experimental setup

A series of tests employing flexible format transmitters is carried
out to verify the feasibility of the proposed approach, as shown

Fig. 2. S1 and Δφ distribution features of PDM-QPSK/8-QAM/16-QAM/64-QAM
with low and high OSNRs.
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in Fig. 3. At the transmitter, a word length of 215 − 1 pseudo-
random bit sequence (PRBS) is generated and mapped into
QPSK or mQAM, which is sampled twice per symbol.
An integrated LiNbO3 I/Q modulator operated by two ports
of digital-to-analog converter (DAC) runs at 64-GSa/s with
25-GHz analog bandwidth to generate 28 GBaud QPSK/
8-QAM/16-QAM/64-QAM optical signals with an external cav-
ity laser (ECL), in which the center wavelength is ∼1549.32 nm
and the linewidth is∼100 kHz. Notice that the light generated by
the ECL passes through a 90:10 fiber-optic coupler, where 90%
of the light is used as signal carrier and 10% as a local oscillator
(LO). Then, these signals are operated by a coupler, two polari-
zation controllers (PCs), two variable optical attenuators
(VOAs), an optical delay line (DL), and a polarization beam
splitter (PBS) to generate PDM signals. Different amplified
spontaneous emission (ASE) noises are generated by adjusting
the amplification factors of the erbium-doped fiber amplifier
(EDFA) to alter the OSNR values of the input optical signal,
including 9–16 dB for QPSK, 13–23 dB for 8-QAM, 15–
30 dB for 16-QAM, 18–30 dB for 64-QAM, and the actual
OSNR value is monitored by an optical spectrum analyzer
(OSA). At the receiver, an optical bandpass filter (OBPF) with
0.8 nm bandwidth is utilized to filter out the outband noise to
improve the performance. The signals after OBPF are merged
with the LO at the polarization diversity hybrid and detected
by balanced photodetector (BPD) as a four-way electrical signal
for offline DSP and OPM. In this scheme, we generate 280 data
sets for each OSNR value of different modulation formats,
including 2240 data sets for QPSK, 3080 data sets for 8-QAM,
4480 data sets for 16-QAM, 3640 data sets for 64-QAM, and
each data set that indicates S1 or Δφ distribution feature is gen-
erated through 20,000 symbols. Meanwhile, we randomly select
80% of the data sets as training data sets, and the remaining are
testing data sets.

3.2. Experimental results

The experimental data are processed according to the principle
of Fig. 1, the number of taps in the CMA algorithm is 25, the
histogram distribution ranges of S1 and Δφ are �−1.8, 1.8� with
80 bins and �−π, π� with 100 bins, respectively. In order to filter
out distribution noise, smooth filtering is performed on the S1
feature, and the size of the sliding window is 5. Subsequently,
the distribution features of S1 and Δφ are normalized and then
put into the Stokes-MTL-DNN, where the first hidden layer is

L2 regularized with weight 0.1 and followed by a dropout layer
with weight 0.1 to improve the generalization ability of the net-
work. The epoch is set at 500, using MAE to evaluate OSNR
monitoring. The MFI and OSNR monitoring results of back-
to-back (BTB) PDM QPSK/8-QAM/16-QAM/64-QAM are
shown in Figs. 4 and 5. Identification accuracies of 100% for
four modulation formats are achieved even when the OSNR
values are lower than the corresponding theoretical 20% FEC
limit, such as 9 dB for QPSK, 13.9 dB for 8-QAM, 15.8 dB
for 16-QAM, and 21.5 dB for 64-QAM. Moreover, the MAEs
of OSNR monitoring for BTB PDM QPSK/8-QAM/16-QAM/
64-QAM are 0.127, 0.244, 0.259, and 0.439 dB, respectively,
and the MAE of each OSNR monitoring with different modu-
lation formats is shown in Fig. 5. It can be seen that all
OSNR monitoring values are within a reasonable range, which
proves the feasibility of the proposed scheme in MFI and OSNR
monitoring.
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Fig. 3. Illustration of the experimental setup of the coherent optical PDM BTB
transmission system.

Fig. 4. Accuracy of MFI for BTB PDM QPSK/8-QAM/16-QAM/64-QAM with differ-
ent OSNR values.

Fig. 5. MAE of OSNR monitoring for BTB PDM QPSK/8-QAM/16-QAM/64-QAM
under different OSNR values.
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3.3. Tolerance of residual CD

In order to further investigate the effect of residual CD on the
proposed method, we add different CD values in all experi-
mental data sets by using a DSP algorithm, such as 0 ps/nm,
400 ps/nm, and 800 ps/nm. As shown in Fig. 6, the MAE of
OSNR generally shows an upward trend with the accumulation
of residual CD values, and the high-order modulation format is
sensitive to CD due to its large number of energy levels, which
leads to changes in the distribution features and becomes less
obvious, but the proposed method still has a certain CD toler-
ance. Meanwhile, the identification accuracies of all modulation
formats are still 100% under the different residual CD and
OSNR values, as shown in Table 1.

3.4. Tolerance of fiber NL effect

As we all know, fiber NL impairment will occur in long-distance
transmission or under high launching optical power, which can
decrease the performance of signal demodulation. In order to
verify the NL impairment tolerance of the proposed method,
we used the commercial software VPI Transmission Makers
to carry out the numerical simulation, as shown in Fig. 7. The
span length of the standard single-mode fiber (SSMF) is set
at 80 km with a dispersion of 16.8 ps/nm, an attenuation coef-
ficient of 0.2 dB/km, and an NL coefficient of 1.27 km−1 · W−1.

28 GBaud PDMQPSK/8-QAM/16-QAM/64-QAM signals with
different OSNR values are generated and then transmitted
through a long-haul transmission link, such as 4000 km SSMF
for QPSK with OSNR 9–16 dB, and 8-QAM with OSNR 13–
23 dB, 2000 km SSMF for 16-QAM with OSNR 15–30 dB,
and 1040 km SSMF for 64-QAMwith OSNR 18–30 dB. In order
to investigate the NL impairment caused by high launch-
ing power (LP), the LP range is set from −1 dBm to 5 dBm.
For the signals obtained from the above simulations, only
the dispersion effect generated by long-distance transmission
is compensated; the rest of the DSP processing flow is shown
in Fig. 1, thus obtaining the signals with different NL impair-
ments. Subsequently, the proposed network is trained by using
only transmission signals with 1 dBm LP, and the joint MFI and
OSNR monitoring performance for signals with different LPs
are tested. The MAEs of OSNR monitoring for all modulation
formats with varied LPs are shown in Fig. 8; it can be seen that
when the LP is less than 1 dBm, there is no strong NL effect due
to the low LP, and the signal is mostly affected by additive
Gaussian white noise. As the LP increases, the NL damage
within the fiber gradually increases the impact on the optical sig-
nal, resulting in the distribution features of S1 andΔφ becoming
less obvious, and thus the MAE increases. The MAE of OSNR
monitoring with different LPs is 1.27, 0.68, 0.26, 1.05, 1.99,
2.66, and 3.56 dB, respectively, and the identification accuracies
for all modulation formats with different LPs are still 100%.
These results show that the proposed method has high tolerance

Table 1. Accuracies of MFI for QPSK, 8-QAM, 16-QAM, and 64-QAM with
Different Residual CD Values.

Modulation Format

Accuracy

0 ps/nm 400 ps/nm 800 ps/nm

QPSK 100% 100% 100%

8-QAM 100% 100% 100%

16-QAM 100% 100% 100%

64-QAM 100% 100% 100%

Fig. 6. MAE of OSNR monitoring for BTB PDM-QPSK/8-QAM/16-QAM/64-QAM
under residual CD.
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Fig. 8. MAE of OSNR monitoring versus different launching powers.
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to the fiber NL impairment and can be applied in long-haul
transmission.

4. System performance analysis

We compare the BTB experiment system performance of the
proposed method and a similar method using the processed
Stokes vector of signals[48]. The performance of MFI and OSNR
monitoring of these methods is shown in Table 2. Notice that
both approaches employ 28 GBaud experiment data rates, while
the processed Stokes vector method takes a single input but
combines the Stokes vector S2 and S3 as one feature. As shown
in Table 2, the proposed method can realize more modulation
formats classification and lower MAE of OSNR monitoring as
well as lower complexity, and we believe that this method can
suit the demands of the rapid and intelligent EON in the future.

5. Conclusion

In this paper, we proposed a convenient and intelligent method
based on DNN for jointing MFI and OSNR monitoring. The
feasibility of the method in PDM QPSK/8-QAM/16-QAM/
64-QAM signals is validated by BTB transmission experiments,
and the tolerance to residual CD is investigated. Finally, we
designed a long-distance transmission simulation link to inves-
tigate the tolerance of the proposed method to the fiber NL
impairment. The results demonstrate that even if the signal
OSNR value is less than the 20% FEC threshold, all modulation
formats have 100% identification accuracy, and the MAE of
OSNR monitoring remains at a reasonable level. With the rapid
development of fiber optic communications and the proposal of
6G technologies[50,51], the role of OPM technology will become
more important. The proposedmethod does not add extra hard-
ware in the link; moreover it can perform identification and
detection with high accuracy and speed, and we believe that this
method can be applied to the next-generation EON.
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